| Science TLOs
http://www.acds-th | cc.edu.au/ | <u>′</u> | Biology
http://www.vibenet.edu.au/home/draft-btios | Biomedical science
http://www.cubenet.org.au/cubenet-groups/assessing-
student-learning/janets-new-page/ | Chemistry (as published on the Chemnet site)
http://www.chemnet.edu.au/7q=node/83 | Mathematics | Physics
http://www.aip.orq.au/info/?q=content/physics-education
group-peg | Agriculture (as published Dec 2014)
http://www.aqitas.edu.au/ | Environment and Sustainability (as published Mar 2015)
http://environmentitas.gradschool.edu.au/uploads/conten
t/drafts/TLOs_for_ES_v0.9.1_November_2014.pdf | |--|------------|---|--|--|---|--|---|--|--| | 1 Understanding science | | Demonstrate a coherent understanding of science by:
articulating the methods of science and explaining why
current scientific knowledge is both contestable and testable
by further inquiry. | Understanding biology 1.1 Demonstrate a coherent understanding of biology by articulating the methods of biology and explaining why current biological knowledge is both contestable and testable through further | Understanding science 1.1 articulating the methods of science and explaining why current scientific knowledge is both contestable and testable by further inquiry. | Understanding the culture of chemistry Understand ways of scientific thinking by: 1.1 recognising the creative endeavour involved in acquiring knowledge, and the testable and contestable nature of the principles of chemistry. | | Demonstrate a coherent understanding of the nature of physics
by:
1.1 Articulating how physics uses observations of relationships
between measurable quantities to create conceptual
frameworks which can be used to explain, interpret and predict | Understanding agriculture Demonstrate an integrative understanding of agriculture by: Explaining the role and relevance of agriculture and its related sciences, and agribusiness in society. | Transdiscipilinary Knowledge Demonstrate broad and coherent knowledge of: 1.1 environments at various scales, interdependencies between human societies and environments, and sustainability | | | 1.2 | explaining the role and relevance of science in society. | inquiry 2. Demonstrate a coherent understanding of biology by explaining the role and relevance of biology in society 1.3 Recognise that biological knowledge has been acquired by | 1.2 explaining the role and relevance of biomedical science (to) society including the translation of biomedical science to clinical and medical outcomes | recognising that chemistry plays an essential role in society and underpins many industrial, technological and medical advances understanding and being able to articulate aspects of the place | | other observations. I identifying the role of fundamental physics concepts (such as laws of conservation) in a variety of different contexts. Acknowledging that there are physical reasoning processes | 1.2 Understanding the major biophysical, economic, social and policy drivers that underpin agricultural practice and how they contribute to practice change 1.3 Understanding how information is adopted and the context | 1.2 key environmental and sustainability challenges and their drivers 1.3 holistic systems thinking and complexity | | | | | curiosity and creativity, and demonstrate creativity in thinking
and problem solving. 1.4 Recognise and appreciate the significant role of biodiversity in
sustaining life on our planet. | | and importance of chemistry in the local and global community. | | characteristic of the discipline 1.4 Explaining the role and relevance of physics in society. | within which producers, processors and consumers, make decisions. | | | Scientific knowledge | | Exhibit depth and breadth of scientific knowledge by: | Biological knowledge | Scientific knowledge | Scientific knowledge Exhibit depth and breadth of chemistry knowledge by: | Mothematical thinking (Understanding the ways of thinking in the mathematical sciences including different approaches in different areas) | Exhibit depth and breadth of scientific knowledge by: | Knowledge of agriculture Exhibit depth and breadth of knowledge of agriculture by: | Systemic Understanding Demonstrate understanding of diverse approaches to environment and sustainability, including: | | | 2.1 | demonstrating well-developed knowledge in at least one
disciplinary area. | Exhibit depth and breadth of biological knowledge by
demonstrating well-developed understanding of identified core
concepts in biology | demonstrating well-developed knowledge in at least one
disciplinary area in the biomedical sciences. | demonstrating a knowledge of, and applying the principles and
concepts of chemistry | ii.1 knowledge of the principles and concepts of a broad range of
areas in the mathematical sciences with depth in at least one
area | 2.2 Demonstrating well-developed knowledge in the subject areas of 2
the physics discipline. | Demonstrating knowledge of the core sciences in the context
of agriculture. | disciplinary and transdisciplinary approaches to identifying and
conceptualising environmental and sustainability challenges | | | 2.2 | demonstrating knowledge in at least one other disciplinary area. | 2.2 Exhibit depth and breadth of biological knowledge by
demonstrating that these 'core concepts' have interdisciplinary
connections with other sciences | 2.2 demonstrating knowledge in other disciplinary areas contributing to the biomedical sciences | 2.2 recognising that chemistry is a broad discipline that impacts on, and is influenced by, other scientific fields | 1.2 understanding of the breadth of the discipline, its role in other
fields, and the way other fields contribute to development of the
mathematical sciences | Demonstrating knowledge in the related disciplinary area of
mathematics. | 2.2 Demonstrating broad generalist knowledge of relevant
agricultural production systems and their value chains, with
specialist knowledge in at least one area. | 2.2 different frameworks for knowing | | | | | | 2.3 demonstrating integration of knowledge from across the
disciplines contributing to biomedical science. | | ability to construct logical, clearly presented and justified
mathematical arguments incorporating deductive reasoning. | , | 2.3 Understanding how knowledge from different sub-disciplines within agriculture is integrated and applied into practice. 2.4 Demonstrating a basic knowledge of economics, business and social science as they apply to agriculture. | their own and others' values, knowledge, perspectives and interests the particular values, knowledge, perspectives and interests of indigenous peoples. | | 3 Inquiry and problem solving | | Critically analyse and solve scientific problems by: | Inquiry and problem solving | Inquiry and problem solving | Inquiry, problem solving and critical thinking Investigate and solve qualitative and quantitative problems in the chemical sciences by: | Discovery and problem solving
(Investigating and solving straightforward problems using
mathematical and/or statistical methods) | Critically analyse physical situations by: | Inquiry and problem-solving Critically analyse and address dynamic complex problems in agriculture by: | Skills for Environment and Sustainaibility Demonstrate well-developed cognitive , technical and communication skills through: | | | 3.1 | gathering, synthesising and critically evaluating information from a range of sources. | Gather, synthesise and critically evaluate information about
biological phenomena from a range of sources. | gathering, synthesising and critically evaluating information from
a range of sources. | 3.1 synthesising and evaluating information from a range of sources, including traditional and emerging information technologies and methods | 2.1 ability to formulate and model practical and abstract problems in
mathematical and/or statistical terms using a variety of methods | Gathering, documenting, organising, synthesising and critically
evaluating information from a range of sources. | 3.2 Gathering, critically evaluating and synthesising information
from a range of relevant sources and disciplines. | 3.1 addressing research questions by identifying, synthesising and
applying appropriate knowledge and evidence from diverse
sources | | | 3.2 | designing and planning an investigation. | Design and conduct field, laboratory based, or virtual biological
experiments. | 3.3 designing and planning an investigation | 3.2 formulating hypotheses, proposals and predictions and designing
and undertaking experiments | t.2 application of mathematical and/or statistical principles,
concepts, techniques and technology to solve practical and
abstract problems. | Designing, planning, carrying out and refining a physics
experiment or investigation | | 3.2 thinking critically and creatively in envisioning, designing and
evaluating sustainable alternatives and envisioning sustainable
futures | | | 3.3 | selecting and applying practical and/or theoretical techniques
or tools in order to conduct an investigation. | 3.4 Select and apply practical and/or theoretical techniques. | 3.4 selecting and applying practical and/or theoretical techniques or
tools in order to conduct an investigation. | applying recognised methods and appropriate practical
techniques and tools, and being able to adapt these techniques
when necessary | | 3.3 Selecting and critically evaluating practical, computational and/or theoretical techniques or tools in order to conduct an investigation. | 8.3 Selecting and applying appropriate and/or theoretical
techniques or tools in order to conduct an investigation | applying tools, methods, skills and theoretical knowledge for
environment and sustainability practice | | | 3.4 | collecting, accurately recording, interpreting and drawing conclusions from scientific data. | Collect, accurately record, interpret, analyse, and draw
conclusions from biological data. | collecting, accurately recording, analysing, interpreting and
drawing conclusions from scientific data. | 3.4 collecting, recording and interpreting data and incorporating
qualitative and quantitative evidence into scientifically
defensible arguments | | 3.4 Applying appropriate physics concepts to the interpretation of
experimental or observational data and the drawing of
conclusions from that data. | 3.4 Collecting, accurately recording, analysing, interpreting
and reporting data. | 3.4 working both independently and collaboratively | | | | | 3.2 Critically analyse observations of biological phenomena by
creating and developing models and/or proposing and testing
hypotheses. | 3.2 defining a biomedical science problem and formulating a hypotheses | demonstrating the cooperativity and effectiveness of working in
a team environment | | 3 | Identifying contemporary issues and opportunities in
agriculture | 3.5 communicating with diverse groups in various contexts using a
range of written, oral and visual means | | | | | | demonstrating creative and innovative approaches to addressing
scientific problems. | | | | | 3.6 engaging with indigenous approaches to environmental and
sustainability challenges | | 4 Communication | | Be effective communicators of science by: | Communication | Communication | Communication Communicate chemical knowledge by: | 6 Communication
(Communicate mathematical and statistical information,
arguments, or results for a range of purposes using a variety of
means) | Be effective communicators of physics by: | Communication Be effective communicators by: | | | | 4.1 | communicating scientific results, information, or arguments,
to a range of audiences, for a range of purposes, and using a
variety of modes. | 4.1 Effectively synthesise and communicate biological results using a
range of modes (including oral, written, and visual) for a variety
of purposes and audiences | 4.1 communicating scientific results, information and conveying
scientifically reasoned arguments, to a range of audiences, for a
range of purposes, and using a variety of modes. | 4.1 presenting information, articulating arguments and conclusions,
in a variety of modes, to diverse audiences, and for a range of
purposes. | appropriate interpretation of information communicated in
mathematical and/or statistical form | 4.1 Communicating physics data, results and analysis, to a range of
audiences, for a range of purposes, and using a variety of modes. | 8.1 Understanding methods of effective two-way written and verbal
communication with different audiences. | | | | | | | | 4.2 appropriately documenting the essential details of procedures
taken, key observations, results and conclusions | 8.2 appropriate presentation of information, reasoning and
conclusions in a variety of modes, to diverse audiences (expert
and non-expert). | 4.2 Understanding and interpreting arguments or opinions based on 4 physics, presented by others. | context using a variety of modes. | 3.5 communicating with diverse groups in various contexts using a
range of written, oral and visual means | | 5 Personal and
professional
responsibility | | Be accountable for their own learning and scientific work by: | Personal and professional responsibility | Personal and professional responsibility | Personal and social responsibility Take personal, professional and social responsibility by: | Responsibility (Demonstrate personal, professional and social responsibility) | Be accountable for their own learning and scientific work by: | Personal and professional responsibility Be accountable for their own learning and professional work by: | Ethical Practice Demonstrate ethical professional, public and personal conduct by having capacity to: | | | | being independent and self-directed learners. working effectively, responsibly and safely in an individual or | | being independent and self-managing learners working effectively, responsibly and safely in an individual and | 5.1 demonstrating a capacity for self-directed learning demonstrating a capacity for working responsibly and safely | ethical application of mathematical and statistical approaches to
solving problems ability to work effectively, responsibly and safely in an individual | Being Independent and self-directed learners | 5.1 Being Independent and self-directed learners 5.2 Working effectively, responsibly and safely in an individual or | 4.1 reflect on and direct their own learning and practice in the
context of environment and sustainability
working both independently and collaboratively | | | 5.3 | team context.
demonstrating knowledge of the regulatory frameworks
relevant to their disciplinary area and personally practising
ethical conduct. | team contexts 5.3 Demonstrate knowledge of the regulatory frameworks and ethical principles relevant to own disciplinary area and personally practise ethical conduct | collaborative context. 5.3 demonstrating knowledge of the ethical and regulatory frameworks relevant to biomedical science and personally practising academic integrity | recognising the relevant and required ethical conduct and
behaviour within which chemistry is practised | or team context | Working effectively, responsibly and safely in an individual or team context. Exhibiting intellectual integrity and practising ethical conduct. | team context. 5.3 Demonstrating knowledge of the regulatory frameworks relevant to their specialist area in agriculture. 5.4 Personally oractisine ethical conduct | 4.2 participate constructively in decision-making consistent with
principles of sustainable development | | | | | | | | | 5.5 Exhibiting interiectual integrity and practising ethical conduct. | 5.4 Personally practising ethical conduct | |